Ontologizing gene-expression microarray data: characterizing clusters with Gene Ontology
نویسندگان
چکیده
منابع مشابه
Ontologizing gene-expression microarray data: characterizing clusters with Gene Ontology
An XML-based Java application is described that provides a function-oriented overview of the results of cluster analysis of gene-expression microarray data based on Gene Ontology terms and associations. The application generates one HTML page with listings of the frequencies of explicit and implicit Gene Ontology annotations for each cluster, and separate, linked pages with listings of explicit...
متن کاملMicroarray Data Mining Using Gene Ontology
DNA microarray technology allows scientists to study the expression of thousands of genes--potentially entire genomes--simultaneously. However the large number of genes, variety of statistical methods employed and the complexity of biologic systems complicate analysis of microarray results. We have developed a web based environment that simplifies the presentation of microarray results by combi...
متن کاملData Analysis: Microarray Gene Expression
Most genomic data within the NextBio platform are generated using the Affymetrix platform (Figure 2). Ideally, all Affymetrix data would be imported as CEL files, and processed using the same normalization method, such as Robust Multi-array Average (RMA)1; however, for pre-existing experiments, this is often impossible. In this case, probeset-level Microarray Suite version 5 (MAS5) intensities2...
متن کاملMining Microarray Gene Expression Data
DNA microarray technology provides biologists with the ability to measure the expression levels of thousands of genes in a single experiment. Many initial experiments suggest that genes of similar function yield similar expression patterns in microarray hybridization experiments. Hence it makes possible to distinguish genes with different functions by analyzing gene data generated from microarr...
متن کاملData Analysis: Microarray Gene Expression
Most genomic data within the NextBio platform are generated using the Affymetrix platform (Figure 2). Ideally, all Affymetrix data would be imported as CEL files, and processed using the same normalization method, such as Robust Multi-array Average (RMA)1; however, for pre-existing experiments, this is often impossible. In this case, probeset-level Microarray Suite version 5 (MAS5) intensities2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2004
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/bth040